If it's not what You are looking for type in the equation solver your own equation and let us solve it.
80x-20x^2=0
a = -20; b = 80; c = 0;
Δ = b2-4ac
Δ = 802-4·(-20)·0
Δ = 6400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6400}=80$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-80}{2*-20}=\frac{-160}{-40} =+4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+80}{2*-20}=\frac{0}{-40} =0 $
| x-2(x+1)=-1 | | -4x-8=-9x-1 | | 2(y-2)-5y=11 | | 5(x-12)=x+4 | | v-17+v-19+v-24=180 | | 1800=8.34*x*7500000 | | 1750=1/2a*100 | | X-7x5=40 | | 4x+3(x+3)=20-(x-5) | | 1750=1/2*a*100 | | 120=(3x^2)+(3x)-6 | | 1750=1/2*a100 | | 0=3t^2-3 | | 8x-14=x-49 | | 6*3(y-3)=y-9 | | 9x(x-1)-7=0 | | 8m+2(-4m+1)=2 | | 1/4x-6=2/3x+4 | | 4x-4(3x+4)=156 | | 2(n-1)=5 | | 7x-42=x-54 | | (x^2+4)+(-5×-6)=22 | | (X+y)/2=87 | | 4z−3z=15−22 | | 4x+3=12x-1 | | 7x+4=-7+3x+23 | | -7x-5÷5=(-15) | | 5/6(h)=15 | | 5y-1.2=4.8 | | 1.10t+8t-2t=16 | | 5(2x-1)-2(4x+3)=2(5x-1)+7 | | .8x=25 |